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A b s t r a c t - T h e  effects of the external mean flow on the bubble response to changes in the ambient 
pressure distribution are examined. The analysis of finite-amplitude shape oscillations of a constant- 
volume bubble in an arbitrary mean flow shows that a monopole pressure disturbance in the far- 
field can occur due only to the interaction between a disturbance flow associated with the shape 
oscillations and a special type of ambient flow. The result is independent of the degree of deformation 
and remains valid for any type of ambient pressure fluctuation that creates shape oscillations. Then, 
we specialize the problem to consider the nonlinear oscillation dynamics of a bubble in the presence 
of a uniaxial straining flow. In this case, the source of oscillations is a spatially inhomogeneous 'ab- 
rupt '  change in the ambient pressure. The method of solution employed here is a domain perturbation 
in conjunction with a two timing analysis to examine small-amplitude oscillations of bubble shape 
relative to the non-spherical steady-state configuration in the ambient mean flow. The result shows 
that the ambient flow can interact directly with a mode of bubble deformation and produces a self- 
induced secularity that leads to a modification of the oscillation frequency. In addition, the disturbance 
pressure caused by shape oscillations exhibits at most a quadrupole character at large distances 
from the constant-volume bubble. 

INTRODUCTION 

This paper considers the nonlinear dynamic re- 
sponse of a bubble to a modulated acoustic pressure 
at the bubble surface, when the bubble is immersed 
in a steady mean flow at high Reynolds number. The 
nonlinear coupling between shape oscillations of a bub- 
ble and pressure variations in the surrounding fluid 
is responsible for a variety of important effects. These 
range from emulsification to acoustic noise generation 
in bubbly liquids [1, 2]. 

The free oscillation of drops and bubbles in a quies- 
cent fluid has been studied extensively since the first 
mathematical model of linear droplet oscillations in 
vacuum due to Rayleigh [3]. The generalized linear 
solution to include the influence of a surrounding me- 
dium was given by Lamb [4]. The solution describes 
the instantaneous deformation of the bubble shape by 
an infinite series of the surface spherical harmonics, 
where each term corresponds to one independent na- 
tural oscillation mode. These linear results have been 
extended to include viscous effects [5, 6j, and nonlin- 
ear oscillations of a liquid drop in a quiescent fluid 
have also been analyzed [7, 8]. In spite of the exten- 

sive literature on oscillating bubble in a quiescent 
fluid, however, relatively little has been done yet to 
determine how the oscillation dynamics are modified 
in the presence of a mean flow around the bubble. 
We are aware of only two papers in this ,direction, 
by Subramanyam [9] and Kang and Leal [107, who 
studied the oscillations of a constant-volume drop or 
bubble in another fluid at low values of Weber num- 
ber. This provides one primary motivation for the pre- 
sent study of the oscillatory motion of a bubble in 
an undisturbed mean flow at infinity. 

In the present  paper, we consider the shape oscilla- 
tion of a constant-volume bubble in response to an 
abrupt change in the ambient pressure in the presence 
of a mean motion relative to the bubble so that the 
steady-state bubble shape is non-spherical. The most 
closely existing analysis is due to Yang et al. E l l ]  
who considered small amplitude oscillations of an 
ideal gas bubble. In this case of a compressible bubble, 
there exist mode-mode interactions between the radial 
and shape oscillations and these interactions can exhi- 
bit resonance when the frequency of radial mode is 
matched with one of the shape modes. For example, 
when the frequency of the radial mode of oscillation 
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is twice that of a normal mode of shape oscillation 
in a quiescent fluid, there is a resonant interaction, and 
the shape mode eventually loses all of its energy to 
the radial mode [12]. The volume oscillation produced 

by the radial mode yields 'monopole '  emission of 
sound (The monopole sound corresponds to a distur- 

bance pressure oscillation which decays in magnitude 
as I/r,  where r is the distance from the bubble). In 
addition, when the ideal gas bubble is immersed in 
the steady mean flow, a self-induced resonance is al- 
ways present  and leads to a decrease in oscillation 
frequency with increase in the degree of bubble defor- 

mation in the steady flow. On the other hand, for a 
constant-volume bubble, radial oscillations only exist 
as a consequence of the constant volume constraint, 

and are much smaller in magnitude than the corre- 
sponding shape oscillations. Furthermore,  the result- 
ing radial mode of oscillation of a constant-volume bub- 
ble cannot create monopole emission of sound in the 
absence of a mean flow, as pointed out by Prosperetti  
V13]. In his paper, Prosperetti  noted that the pressure 
field caused by the motion of a constant-volume bub- 
ble has a dipole character if the center executes oscil- 
latory motion, of the quadrupole type if the bubble 
undergoes oscillations from a prolate spheroidal shape 
to an oblate one, and of higher multipole types for 
other forms of oscillations 1. Accordingly, the pressure 
perturbations are proportional to r 2, r 3 or higher 
powers, which are to be compared with the slow decay 
proportional to r 1 associated with changes of volume. 
However, in the presence of a mean flow the oscilla- 
tion dynamics and the resulting pressure disturbance 
will be modified due to the interaction with the flow. 
In particular, we will show that shape oscillations of 
any amplitude for a constant-volume bubble cannot 

create a monopole-like pressure disturbance at infin- 
ity, except in the presence of very special types of 

ambient flow. 
We begin, in the next section, by formulating the 

governing equations and boundary conditions. Follow- 
ing this, we consider the nonlinear dynamics of an 
incompressible bubble in an arbitrary mean flow. In 
the first part, we show that a monopole emission of 
sound in the far-field can occur due only to the inter- 
action between a disturbance flow associated with the 
shape oscillation and a special ambient flow. Then, 
we specialize the problem to consider the dynamic 
response of a constant-volume bubble to a spatially 
inhomogeneous 'abrupt '  change in the ambient pres- 

1) N-th order multipole pressure field such as dipole and 
quadrupole denotes a pressure perturbation which de- 
cays in magnitude as r N (N>2). 

Fig. 1. Definition of the spherical coordinate system for 
an oscillating bubble. The spherical surface of ra- 
dius R encloses the bubble. The z-axis of a cylin- 
drical coordinate system (z, v, q~) is directed :along 
the axis of symmetry and r = v / ~ v  2. The bubble 

surface is defined by F = 0 .  

sure, with the bubble immersed in a uniaxial axisym- 
metric straining flow or in a quiescent fluid. In this 
investigation, we employ the method of domain per- 
turbation in conjunction with the multiple scaling anal- 
ysis to analyze small amplitude oscillations of bubble 
shape relative to tile non-spherical steady-state confi- 

guration in the ambient mean flow. 

BASIC EQUATIONS 

We consider an incompressible bubble of volume 
4na:~/3 which is undergoing oscillations of shape in 

the presence of an undisturbed flow of an inviscid 
fluid with density p as sketched in Fig. 1. The surface 
of the bubble is assumed to be clean and mobile, and 
characterized completely by a constant interfacial ten- 
sion o. In the absence of pressure fluctuation or exter- 
nal mean flow, the pressure is uniform with magnitude 
po and the bubble is spherical with an equilibrium ra- 
dius a. Furthermore,  we neglect all effects of gravity 
including the hydrostatic pressure variation in the 
fluid. In order to non-dimensionalize the gove:ming 
equations for bubble oscillations, we introduce charac- 
teristic velocity (u=), length qc), and time (t~) scales. 
Since the dynamic pressure difference is balanced 
with the surface tension at the bubble surface at all 
times, the most appropriate choice is 

u , = v / - ~ , l c = a , ~ = V / ~ .  (1) 
pa c 
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Then the governing equations appropriate to the pro- 
blem described above can be expressed in terms of 
the velocity potential �9 and the pressure field p 

v2~ = 0 (2) 

qb, + l (vc I )  �9 VCb) + p = pO (3) 

where the subscript denotes the differential variable. 
We now specify the bubble surface in terms of 

spherical polar coordinates(r, 0, (p), by F = - r - l - f f 0 ,  
(p, t)=0. In this study, we assume that the source of 
the oscillations in bubble shape is a time-dependent 
spatially inhomogeneous acoustic pressure A(0, cO, t) 
at the bubble surface. This type of surface pressure 
modulation can be produced experimentally via ultra- 
sonic acoustic wave fields, without generating any net 
motion of the suspending fluid [-14, 15]. To describe 
the bubble oscillations in response to the modulated 
acoustic pressure on the interface, the disturbance 
flow field must be determined with the acoustic radia- 
tion pressure incorporated into the boundary condi- 
tions at the bubble surface [-16, 17~. On the bubble 
surface the kinematic condition and the normal stress 
jump condition must be satisfied: 

- Ft = V ~ .  V F  (4) 

~ - p ~ - A ( 0 ,  O, t ) + ~ + I ( v ~ ' v ~ ) = v ' ( ~ F T ) V F  

(5) 

where ~ is an unknown time-dependent pressure in- 
side the bubble which must be determined to satisfy 
the constraint of volume conservation. The far field 
boundary condition corresponding to the presence of 
an undisturbed mean flow can be expressed as: 

~-~cI~' as r ~  (6) 

where cI~ represents the velocity potential for the un- 
disturbed flow. 

In addition to the differential equations and bound- 
ary conditions (2)-(6), the solution for bubble shape 
must satisfy the constant volume constraint, i.e., 

((l § f):~):- ~ ,  f o2" f o'(l + OasinOdOdw: t (7) 

in which (( �9 )) denotes the spherical surface average 
of the quantity ( - ) .  

F I N I T E - A M P L I T U D E  S H A P E  OSCILLATIONS 

In the presence of a mean flow at infinity, the distur- 
bance pressure field for an incompressible bubble is 

a consequence of the interaction between the distur- 
bance flow produced by shape oscillations and the 
undisturbed mean flow. The interaction between cha- 
nges of bubble shape and mean motion of the surround- 
ing fluid can be determined in a general frame work 
where it is not: necessary to limit the analysis to the 
small deformation limit. Suppose ~ is the velocity 
potential of the steady-state solution for a constant-vol- 
ume bubble in a mean flow as defined by the velocity 
potential ~ .  Suppose also that $ is the disturbance 
potential due to shape oscillations which are caused 

by the acoustic pressure modulation. These velocity 
potentials can be expressed in terms of the spherical 
surface harmonics S,(0, O) of order n(n= 1, 2,...) in 
the form: 

~ =  ~ Kr~S'(0' e ) +  ~o C, S,(O, ~) (9) 
i=1  ) 

D~(t) r S,(0, ~) (10) 
j = 0  

where Bi, Ci are constants and Dj(t) is a function of 
time t only. The sum of the terms with coefficients 
131 in (9) corresponds to the velocity potential ~ for 
the undisturbed mean flow. Note that the form (10) 
does not assume that the deformations of bubble 
shape are necessarily small. 

To determine the pressure field, we utilize the 
equation of motion (3). The disturbance pressure at 
infinity pd ~ which comes from the shape oscillations 
is then defined by 

, i V 2 p,l*= p ~ -  {p' - ~-((I~)  }. (11) 

As a first step, we show that C0=D0(t)=0 for a con- 
stant-volume bubble. At steady-state, the volume flux 
across any circumscribed spherical surface should be 
zero for an incompressible fluid, i.e., 

4n JoJo\ Or /~=R sinOdOd(p=O (12) 

where R is the radius of an arbitrary spherical surface, 
which is centered at the origin and encloses the bub- 

ble. Since 

it follows from (9) and (12) that 

Co = 0. (13) 

For the unsteady case where the bubble executes 
shape oscillations, the net volume flux across the same 
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spherical surface is still equal to zero. Thus, it follows 
from (10) that 

1 f2~(~IO(q~ + ~ )  ]~ gSin0d0dq~ = D0(t) = 0 (14) 
4n J0 JoL 0r : 

and we see from (10) and (14) that shape oscillations 
of a constant-volume bubble cannot generate a mono- 
pole-like (i.e., source-like) disturbance of the velocity 
potential. This result is clearly independent of the de- 
gree of deformation and type of flow, and is solely 
due to the constant-volume constraint. 

It thus follows from the equation of motion (3) that 
the only possible source of a monopole contribution 
to the pressure field is the term 

v4>'. v ~ .  (15) 

Further, for a constant-volume bubble, we see from 
(10) and (14) that 

�9 :D2(t)~S2(0, rp)+O(r 4) as r-->oo. (16) 

Here, we exclude the term involving S~(0, o) which 
corresponds to a simple translation of the sphere. 
Thus, if the bubble oscillation is to create a monopole 
pressure distribution, the potential q~ of the steady- 
state undisturbed external flow must vary at large dis- 
tances from the bubble as r 4. Indeed, if 

1[ D~ B4r4S4(0, q})+O(F 3) as r-->oe (17) 

the bubble oscillation will create a mon@ole pressure 
distribution. The monopole pressure can be deter- 
mined simply from (11), (16) and (17). The result 
is 

pd~B4D,~(t)(12S,,S4 oS_~ 0S4 
- 0 0  O0 

1 0S2 0S~ ~ 1 
sin20 Oqo 0 o  ] r 

as r~cc.  

(18) 

This monopole pressure fluctuation is due solely 
to the interaction between the particular external 
mean flow corresponding to (17) and the disturbance 
field generated by the shape oscillations of a constant- 
volume bubble. A monopole-like pressure disturbance 
is not possible for an incompressible bubble in either 
a quiescent fluid, or in the presence of a linear mean 
flow. The surprising feature here is that there is a 
form for the external mean flow which does produce 
a monopole-like contribution to the far field pressure 
distribution. However, the practical significance of this 
result is limited since a flow of the required form 

is difficult to achieve. For a uniform flow, a quiescent 
fluid, or even flows which depend linearly or quadrati- 
cally on the spatial position, our analysis has demon- 
strated that a monopole-like dependence of the pres- 
sure disturbance cannot be created by shape oscilla- 
tions of an incompressible bubble. However, when the 
bubble center executes oscillato~ motion, we must 
include the $I( 0, O) mode in (16). In this case, a con- 
stant-volume bubble can emit a monopole pressure per- 
turbation in the presence of a quadratic mean flow 
[~i.e., ~"-B:~r:~Sa(0, (0)+O(r2)J. It is noteworthy that 
the general features discussed above are indepo~dent 
of the degree of bubble deformation, and remain valid 
for any type of ambient pressure fluctuation that ,:rea- 
tes shape oscillations. 

SMALL-AMPLITUDE OSCILLATIONS IN A 
UNIAXIAL STRAINING FLOW 

In this section, we study shape oscillations of a con- 
stant-volume bubble, when the fluid undergoes a 
uniaxial straining flow. We are especially interested 
in the influence of the steady deformation due to the 
ambient flow, and in the consequence of the radial 
mode oscillations that are required in the presence 
of shape oscillations to maintain the bubble voJ:ume 
constant. The far-field velocity potential qb u for the 
presence of the undisturbed straining flow with: the 
principal strain rate E can be expressed in terms of 
the second order Legendre polynomial P2(~): 

~_--~1"~2P2(~) (19) 

where e is the Weber number, defined by e---o(Ea)~a/c 
and ~---cos0 with the angle v measured from the axis 
of symmetry. 

We now specialize the problem to consider the 
small-amplitude oscillations of a constant-volume bub- 
ble caused by an abrupt change in the pressure on 
the bubble surface at some initial instant, when the 
bubble is in a uniaxial axisymmetric straining flow. 
Without loss of generality, we assume that the applied 
pressure modulation A is axisymmetric, i.e., A A(O, 
t), so that the deformed shape of the bubble remains 
axisymmetric. The obvious requirements for the limit 
of small deformation where the shape is nearly sphe- 
rical are ~r and A(0, t)~O(1). To simplify the 
analysis, it is convenient to use the method of domain 
perturbations for the limit A(0, t)=O(~) to transform 
the kinematic and the normal stress conditions al: the 
bubble surface to equivalent conditions applied at r =  
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1. The method is well-known and we simply quote 
the results for the kinematic condition [-i1], which 
becomes 

f t -  ~ ,  = f ~ , , -  ( 1 - ~2) (fr + 2ff~O~ - ffd:D,O 

- 2 f z ~ . ~ + O ( f  3) at r = l  (20) 

and the normal stress condition, which takes the 
form 

+ 2f + V,2f + G(t) = A(0, t) - fo r , -  l ( v r  

+ 2f(f + v~2f)- f(Vr (Vr  ~-r fz(2f + 3v,2f) 

+ (1-~)(f0~(3V~Zf+ ~f<)+ O(f4)at r=: 1 (21) 

in which we define the internal bubble pressure as 

= ~0+ G(t) (22) 

and we utilize the equilibrium condition ~~176  
Here, v~ 2 denotes the surface Laplacian: 

V,2-= 0~- { (1 -  ~2) 0~- } 

The unknown time-dependent constant G(t) repre- 
sents the pressure change inside the bubble due to 
the shape oscillation. 

In the asymptotic limit outlined above, it is usual 
to expand the solution in the form of a perturbation 
expansion for small s ~ 1 ,  i.e. 

�9 = sl/200 + sO1 + ~3n02 + ' " ,  (23) 

f= sfl + 83/2f2 + 8zf3 + ' " ,  (24) 

and 

G(t) = cG1 + 83/2G2 + s~G~ "''. (25) 

We expand the bubble shape function f~(/~, t) at each 
order in r as an infinite series of the Legendre poly- 
nomials P.(O of order n: 

f,(~, t )= ~2 a,..(t)P.(~), j =  1, 2-." (26) 
n=0 

and the velocity potential ~ at each order in ev2 in 
terms of solid spherical harmonics: for j=0,  

~0 = r + Z bo., P"(~) (27) 
n=o r n + l  

and for j_>l, 

P.(~) 
~ , =  ~2 b,,.(t) ~-~ . (28) 

n=0 

All that remains is to determine the time-dependent 
coefficient functions ai,(t) and b~,,(t) which satisfy the 
kinematic and the normal stress conditions (20), and 
(21) at the bubble surface. 

The steady-state problem with A(0, t )=0  was stud- 
ied by Kang and Leal ]107, and we simply quote their 
results here. For the present study, we need the veloc- 
ity potential r at the steady state up to O(s 3/2) which 
has the form: 

r = el/2~0~ + e:~/2apz ~ + O(e 2) with ~ l  ~ = 0 (29) 

where 

Co'= ( l r 2 +  1-r 3)P2(r (30) 

and 

r  1"275 P2(~)q 325 P4(O 125 P6(O- 
2=L~,z/,~ ra 5544 r s 4158 r 7 

(31) 

Here, the superscript s will be used hereafter to de- 
note the steady-state solution. For the present pur- 
pose, the shape function ff at the steady state is requir- 
ed up to O(e) and can be expressed as: 

ff=s[3~6 P 2 (0 -  ~ 5  p4(~)] + O(E2)" (32) 

Let us first consider the bubble response in the 
uniaxial straining flow to an impulse in the pressure 
at the bubble surface. In this case, the functJkon A(v, 
t) can be expressed in terms of the Legendre polyno- 
mials P.(0 for an axisymmetric mode: 

A(0. t )=e  Z A.6(t)P.(r (33) 
n 

where sA, is the impulse magnitude of the P,(~) mode 
and 5(0 is the Dirac-delta function. The impulsive 
change of the pressure at O(e) induces an initial O(e) 
oscillation of the bubble shape. The equation.,; of mo- 
tion and boundary conditions for the linear approxi- 
mation at O(s) admit solutions in the form of normal 
modes: 

O(s) Solution: 

For n~2, 

(,1 + 1)A. 
a~.,(t)- - -  sinco, t + a{.. 

CO, 

b~..(t) = A,,coso~.t. 

For n = 0  and 1, 

(34) 

(35) 

al~(t) = bl~(t) = 0. (36) 
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Here, co. is the natural frequency of the P.({) mode 
(n22) and is defined by 

CO.~ v/(n - 1)(n+ 1)(n + 2). (37) 

Thus, the problem can be viewed as an initial value 
problem with 

a,~(0) = 0; f f t t  a1.~(0) = - (n + 1)A., 

a a,- ,,.(o)= o (j>l)  (38) 
at 

for n~2, The existence of a radial mode of oscillation 
for an incompressible bubble is solely a consequence 
of the fact that the O(g) shape oscillation (34) produces 
a volume change at O(e2), and this must be compensa- 
ted by an O(e 2) contribution from the radial mode to 
maintain constant volume. 

To determine the shape oscillations at higher order, 
we adopt the asymptotic expansion scheme (23)-(25) 
together with the general solution forms (26)-(28), and 
derive governing differential equations for the coeffi- 
cient ai.(t) and bj,.(t). This process is straightforward. 
However, an important feature of the analysis is that 
the governing differential equations for a=,(t) (n>_2) 
turn out to contain secular terms of self-induced type, 
which are present whenever the coefficients a{. for 
the steady-state shape are non-zero (i.e., whenever 
the bubble is deformed at steady state). Since we ex- 
pect bounded solutions for the various shape modes 
[recall that the pressure change is small, of O(e)], 
it is evident that the form of the solutions (34)-(36) 
are overly simplified. In particular, experience with 
similar problems indicates the necessity of allowing 
a slow variation of the amplitude or phase of each 
mode on a time scale 

= et (39) 

to be superimposed on the higher frequency oscilla- 
tion that is at (or near) the natural frequency CO~. The 
asymptotic analysis is then carried out via a standard 
two-timing procedure. 

With this change, the O(~)-solution is now expressed 
in terms of normal modes, (26)-(28), in which the coef- 
ficient functions take the form 

1 ,0,.~ + aL.(t, 1:)= ~-EI31.(z)e al~..] + c.c. (40) 

bl.,,(t, "c)= iCO~ .13,,.(.c)e,~.,+c.c. (41) 
2(n + 1) 

with 

&(n§ 1)i 
[Bl.(0) (42) 

COn 

for n~2. Here, ~l,.(v) is a complex function (i.e., i-- 
�9 v / ~ )  and c.c. denotes the complex conjugate of the 
preceding term(s). The slowly varying function 13~..(z) 
is chosen in such a way that the self-induced secular 
terms at O(e 2) are cancelled in the governing equation 
for a3.. so that the solution for a:~. remains bounded 
for all t. This procedure leads to a differential equation 
for 13,.(~). 

In the presence of the uniaxial straining flow, the 
second term in the expansion for f and (1) occurs at 
O(~3/2). Governing equations for the P2, and P~ modes 
of oscillation at O(~3/2), can be obtained from the gene- 
ral Eqs. (20) and (21) and the forms of the O(e:) solu- 
tions above. However, it is not necessary to report 
all of the details, except to introduce the solution at 
O(~ 312) and this solution then will be used to derive 
the governing equations at O(~2). 

O(~ :v2) Solution 

P~ Mode 

125 - i iCO4 
a22(tx) = ~ [_A4e ,o~ + ~ _  [B~.4(z)e,~V] + c.c. (43) 

b~A 5 [[Bt2(z) 25iCOzA4 ]e,~,2 , 
b.~2(tx) = ~ + ~ 117 

35 
-]- ~--[~1,4( 'r  r + C,C. (44) 

P4 Mode 

75 f .  ,~. iCO,_, f31.,(.c)e,~,]+c.c. a~,(t,~:): ~ s  ~ + ~ -  - (45) 

b.,A(tx)= ~ + 71312(z)e'"'2t 

+ 5 []31.4(v ) 1 lico4A,2 ]e,~4~ + c.c ' (46) 
26 

Obviously, the radial mode does not appear at O(E3/2). 
A constant-volume bubble will execute the radial- 
mode oscillation at O(e ~) to compensate the volume 
change associated with the shape oscillations at O(~). 

The governing equations at O(e 2) are again ohtained 
from the kinematic and the dynamic boundary condi- 
tions (20) and (21), and now depend on the forms 
of the solutions for both aj,., bj. ( j -1 ,  2). For brevity, 
we show explicitly, only the equations for a:u,, as.2, and 

as4. 

O(g 2) Problem 

Radial Mode 
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1 
a3.0(t,~)=- E [al.n(tx)] 2 -  (47) 

,>2 2 n + l  

P2 Mode 

( ~  + r = ( - ko2~-z + 38~90 ) 

[~(z)e i'~ + c.c. + n.s.t. (48) 

P4 Mode 

02 ~ + m42 a3.dt,r) = - io~4 + --44827934649/~ 

~.4( '0e~ + c.c. + n.s.t. (49) 

where n.s.t, denotes the non-secular terms. 
As noted earlier, there are self-induced secular 

terms at O(eZ), which are everpresent due to the non- 
spherical steady-state shape in the straining flow. To 
obtain bounded solutions at O(e), the slowly varying 
coefficients [3L,(~) in the O(e) solutions must be chosen 
to eliminate the self-induced secular terms in (48) and 
(49). Thus, the solution which satisfies the initial con- 
dition (42) for an impulsive change of the ambient 
pressure, as defined in (33), is 

A (n+ 1) 
[31,n(~" ) = i " ' e x p ( -  ko.Q.l:) (50) 

(O n 

where Q. is a constant that depends on n, e.g., Q2 = 
0.3093, Q4 = 0.0498, etc. It follows from (50) that the com- 
plete solution at O(~) for the impulsive pressure re- 
sponse in terms of the coefficients a~.. and bl.. is 

P. (nk2) Mode 

A.(n + 1) 
aL.(t) = al~ sin[(o.(1 - Q.~)t] (51) 

On 

bL.(t) = A.cos[(o.(1 - Q.~)t] (52) 

where a,~ denotes the steady-state shape and is given 
by a,~= (25/336), aL~= - (5/126), and others= 0. 

Among the most interesting and important results, 
evident from (51) and (52) is that the frequency of 
shape oscillation is modified by the presence of the 
extensional flow. This frequency modification is due 
solely to the non-spherical steady-state shape and is 
not present in the absence of the external flow. The 
fact that the frequency of the shape oscillation decrea- 
ses in a straining flow has an important fundamental 
significance, because at the critical Weber number ~, 
where the square of the frequency of oscillation be- 
comes zero, eigenvalues for the coefficients functions 
a~., change from pure imaginary to real. The critical 
Weber number where this occurs will thus correspond 
exactly to a limit point for existence of the correspond- 

ing steady-state solution. An asymptotic prediction of 
the critical Weber number can therefore be obtained 
from the present solution (51), namely 

min(2~.  ), Q.>0 (n>2) ~ 

or 

e,-= I.r 

Kang and Leal [10] studied small amplitude oscilla- 
tions of a constant-volume bubble and showed that 
the steady-state solution for the bubble shape suggests 
the existence of a limit point at a critical Weber number, 
beyond which no solution exists on the steady-state 
solution branch which includes the spherical equilib- 
rium state in the absence of flow (e.g., the critical val- 
ue of 1.73 was estimated from the third-order solu- 
tion). The estimate of the critical value predicted here 
at which the stability of the solution branch is excha- 
nged is much closer to the numerical value of 1.38 
estimated by Miksis [18] and Ryskin and I.~al [19]. 
In addition, Kang and Leal [10] also determined the 
eigenvalues directly by considering mode-mode inte- 
ractions between the first two even orders without 
inclusion of higher-order modes. From these eigenval- 
ues the critical Weber number was found to be 1.613 
which is almost identical to the present result. 

The radial mode which must be added to conserve 
volume at O(e 2) is 

Radial Mode 

a~o(t)=azo(t)=0,, . a3,o(t)=- .>2E [al,.(t)]2~nl_~- (53) 

b:.0(t) = 0 (j~l).  (54) 

The significance of the solutions (53) and (54) for the 
radial mode is twofold. First, the frequency of this 
radial mode for a constant-volume bubble will[ be quite 
different from the natural frequency (o0 for radial oscil- 
lations of an ideal gas bubble. In a previous study, 
Longuet-Higgins considered small-amplitude oscilla- 
tions of an ideal gas bubble caused by relaxation from 
an initially distorted shape of O(c) in a quiescent fluid 
[20]. He found that at second order, O(e2), the distor- 
tion modes create a radial mode of oscillation with 
the natural frequency 

oJo-= v/3y ~o__ 2 (55) 

where the parameter y depends on the thermodynam- 

ic nature of the bubble oscillation. For isothermal oscil- 
lation y is unity and for an adiabatic process; u is the 
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(a) 

(b) 

(c) 

Fig. 2. Oscillation of the amplitude function a3,0(t) around 
its steady-state value ago for three modes of the 
pressure impulse: (a) Az= 1, A,=O, (n~3),  ~=0.1;  
(b) A4= 1 (other=0), ~=0.1;  (c) A2=A4 == 1 (others 
=0),  ~=0.1. 

ratio of the specific heat capacities (y = CJC,.). Other- 
wise, y ranges between these two limiting values. For 
a constant-volume bubble, however, the predicted fre- 
quency consists of a superposition of freqencies for 
the shape oscillations, al.~(t) (n>2). In Figs. 2a-2c, the 
radial mode oscillations, i.e., aa.0 vs. t are illustrated 
for three different modes of the pressure impulse. 

As noted, the oscillation pattern of radial mode is clear- 
ly dependent  upon the mode of impulse in the am- 

Fig. 3. Fluctuating pressure p~ at large distances from 
the oscillating bubble for Az= 1 (others=0), c =  
0.1. The dashed line is for the pole (0=0) and 
the solid line for the equator (O=n/2). 

bient pressure, which is quite different from the result 
for a compressible bubble. 

The second point of significance of the solutions 
(53) and (54) is that, for an incompressible bubble, 
the radial mode oscillation cannot generate a pressure 
disturbance that resembles a monopole, in the sense 
that it decays like r 1. As we noted earlier, the radial 
oscillation of an ideal gas bubble emits the monopole 
disturbance pressure. However, this monopole pres- 
sure contribution is due to changes in the bubble vol- 
ume [-13, 203. For a constant volume bubble, it is still 
necessary to include radial mode contributions to the 
bubble's motion at O(~2), but these exist only to cancel 

volume changes associated with the change in shape 
at O(e), and the disturbance flow-field does not contain 
a source-like disturbance at any order in ~, i.e., bl0(t)= 
0 (j21). Since the major contribution to the distur- 
bance pressure comes from the P.,(O-mode oscillation, 

it is sufficient to consider the pressure impulse with 
the same mode [i.e., A=A~P2(~) 8(0]. Indeed, the dis- 
turbance pressure due to the shape oscillation behaves 
like r ~ at large distances from the constant-wflume 
bubble: 

1 , P2(O pd ~ = eA~m2sin{m~( - g Q 2 ) t / ~ -  + g3"aA2 

cos{me(1-gQ2)t} 8P2(0+ 18P4({) +_O(r 4) (56) 
7r ~ 

The fluctuating pressure at large distances is plotted 
as a function of time t in Fig. 3 for two different polar 
angles 0 = 0, n/2. It can be easily seen that the ampli- 
tude of oscillating pressure at the pole (0=0)  is larger 
than that on the equator ( 0 -n /2 ) .  This is due to the 
fact that the extensional flow makes the amplitude 
of bubble-shape distortion large at the pole compared 
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(a) 

(b) 

Fig. 4. Initial pressure distribution (pa~),=o at large dis- 

tances from the bubble for two different modes of 

the pressure impulse with s = 0 . 1 :  (a) Az=  I (others 
=0); (b) A 4 : 1  (others=0) .  The dashed circle re- 

presents the steady pressure distribution in the pre- 

sence of the extensional flow. 

with that on the equator. Further, the pressure oscilla- 
tions at the two locations are out of phase with an 
identical frequency. 

An important objective of the present study is the 
pressure disturbance at large distances from the bub- 
ble owing to the interaction between the shape oscilla- 
tion and the extensional flow. Hence, we consider the 
origin of each term in (56) in detail. First. the O(e) 
term comes from the P2(()-mode of shape oscillation 
at the same order and would be present with Q2:=0 
in a quiescent fluid. On the other hand, the O(e 3/2) 

term arises from the interaction between the shape 
oscillations and the external mean flow and would not 
be present in the absence of the straining flow, i.e., 
the O(e :~/'z) contribution to the pressure disturbance 
is associated with the Bernoulli term (V(I)0)" (V(I)~) and 
O~2/Ot in the equation of motions. The two contribu- 
tion to the pressure perturbations are anti-phase. Thus, 

the initial disturbance pressure at large distances is 
due only to the influence of the straining flow and 
given by 

(pS')t o ~ ~3,/2 8P2(~)+ 18P4(~) 
7r ~ (57) 

In Fig. 4a and 4b, the initial distributions of distur- 
bance pressure at large distances are plotted as a func- 
tion of the polar angle 0 for the P2 and P4 mode of 
pressure impulses, respectively. It can be noted that 
the disturbance pressure exhibits higher order mode 
distribution than the mode of the impulse. This is due 
to the mode-mode interactions, or the evolution of 
a low order mode oscillation to higher order mode. 
The proportional amplification is therefore 

Pd~ =O(~; v2) .(58) 
(pa~)t-0 

which is large in the asymptotic limit ~ 1 .  
By taking the spherical surface average of the dy- 

namic boundary condition (21), we can also determine 
the distrubance pressure inside the bubble 

G(t) = - 5 _ d~/2A2cos{(o2( 1 _ ~Q0t} + O(~ 2) (59) 

where the factor - 5 / 1 2  at O(r is required to balance 
the ambient pressure change induced by the exten- 
sional flow. Thus, the internal pressure fluctuates with 
the same frequency as the P2(~) mode of deformation. 
It is worth pointing out, for this case of a constant- 
volume bubble, that a radially symmetric pressure 
pulse (i.e., A0=#0, A , - 0 ,  n~2)  will only induce a distu- 
rbance in the internal pressure and cannot generate 
any shape oscillation. On the other hand, an axisym- 

metric but non-isotropic pressure disturbance (i.e., 
A,=~0) leads to both radial and shape oscillations in 
addition to the internal pressure disturbance. 

Now, we may mention briefly the response of the 
constant-volume bubble to an impulsive change of 
pressure when the fluid is not undergoing any steady 
motion. The analysis is analogous to that considered 
above, and in most respects the behavior of the bubble 
is similar. Specifically, a radial mode of oscillation ex- 
ists at O(~ 2) to satisfy the constant-volume constraint, 
but the equivalent source strength -b/.0(t).generated 
by the bubble oscillation is identically zero. The chief 
difference between this limiting case and the bubble 
in an external flow is that there is no secular behavior 
at O(82). Hence, there is no frequency modification 
in this case and leading order nonzero solution for 
the radial and deformation modes of oscillation is sim- 
ply 
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a~,.(t)- A. (n+  1) sin~0.t, (n>2) (60) 
03n 

1 
a3,0(t) = - Z - -  [a~,.(t)} 2 (61) 

.~2 (2n+ 1) 

The isotropic component of the pressure impulse (i.e., 
the term proportional to Ao) does not influence the 
bubble oscillation at all. The internal pressure through 
terms of O(e 2) is 

(n + 1)A. 2 
G(t)= - ~2 Z ~g-~_~-,, [3+  ( 4 n -  1)cos20J.t} + O(e3). 

n~'2 ~ n T l /  

(62) 

Comparison of this result with (59) will serve to em- 

phasize the fact that the term of 0(~ 3/2) found earlier 
is strictly due to interaction between the O(e) oscilla- 

tion and the mean flow, and is thus zero in the ab- 
sence of the flow. 

Finally, it is noteworthy that the general features 
of the results discussed in this section for bubble oscil- 
lations caused by an impulsive change in the pressure 
in the presence of a uniaxial flow, are not altered if 
we consider a step change in pressure, i.e., 

A(0, t )=  Z A.P.(~) H(t) (63) 
n 

where H(t) is the Heaviside step function. For the 
step change, the leading order solution is given by 

1 F i t s A. (n+  1) ] 
ale(t, ~)= ~-LB,~(v)e~" + a l .  J+c.c.  (64) 

(On 2 

hi..(t, z) = k o .  [31,.(v)e.., t + c.c. (65) 
2(n + 1) 

with 

A.(n+ 1) 
[31~(0) co2 (66) 

instead of (40)-(42) for the impulse. Thus, the bubble 
oscillates around a new steady-state shape aL~,--(n+ 1) 

A./o~. 2 with an amplitude ( n+  1)A./oJ. ~. 

CONCLUSIONS 

In this study, we consider the effects of an external 
flow on the dynamic response of a constant-volume 
bubble to changes in the ambient pressure. We find 
that, for an incompressible bubble, a radial mode oscil- 
lation is present only as a consequence of the con- 
stant-volume constraint, and cannot be created by the 
mode-mode interactions (of the deformation modes) 
that are incorporated into the kinematic and the dynam- 

ic boundary conditions. In this case, as shown in sec- 
tion 3, a monopole pressure radiation can be created 
at large distances only by an interaction between the 

S.(0, to)-mode of deformation and an external mean 
flow which varies like ~u--r"+2S.+2(0, tO) as r---~oo. 
Therefore, in the absence of an external flow, the dis- 
turbance pressure caused by motion of a constant-vol- 
ume bubble exhibits at most a quadrupole character 
that is associated with the Sd0, to)-mode of shape oscil- 
lation. Accordingly, the decay of the disturbance pres- 
sure is faster than the monopole decay for an ideal 
gas bubble. 

We also examine small-amplitude oscillations of a 
constant volume bubble in response to an ' abrupt '  
change in the ambient pressure in the presence of 
a uniaxial extensional flow. The result of the asymptot- 
ic analysis for small-amplitude oscillations shows that 
a self-induced secularity always arises at O(c 2) due 
to the non-spherical steady-state shape in the straining 
flow. The secularity leads to the modification of oscil- 
lation frequency, which decreases as Weber number  
increases. For a constant-volume bubble, the square 
of the frequency goes to zero at e=1.616. Thus, a 
bubble in an inviscid straining flow would be unstable 
for Weber numbers  larger than 1.616, which is very 
close to the numerical prediction of 1.38 by others. 
For an incompressible bubble, a radial mode of oscilla- 
tion is present at O(e z) only to cancel volume changes 
associated with the change in shape at O(e), and the 
disturbance flow-field does not contain a source-like 
disturbance at any order in e. In addition, the frequen- 
cy of this radial mode for a constant-volume bubble 
will be quite different from the natural frequency ~o0 
for radial oscillations of an ideal gas bubble. 
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